ProCount: Weighted Projected Model Counting with Graded Project-Join Trees

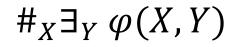
Jeffrey M. Dudek - Vu H. N. Phan - Moshe Y. Vardi

Rice University July 8, 2021

SAT 2021

In This Talk

Problem: Weighted Projected Model Counting



Applications in planning, formal verification, and infrastructure reliability

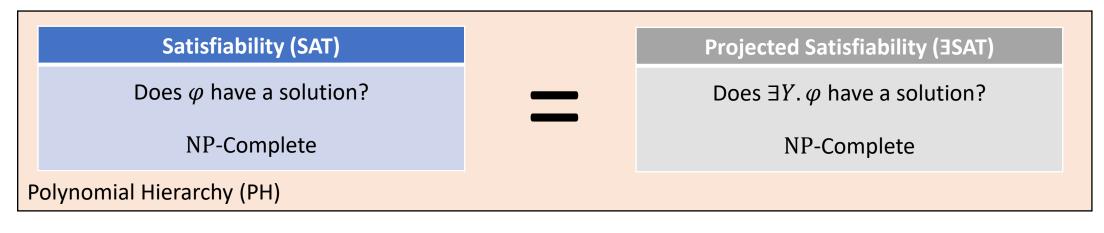
Our Solution: Two-phase algorithm based on graded project-join trees

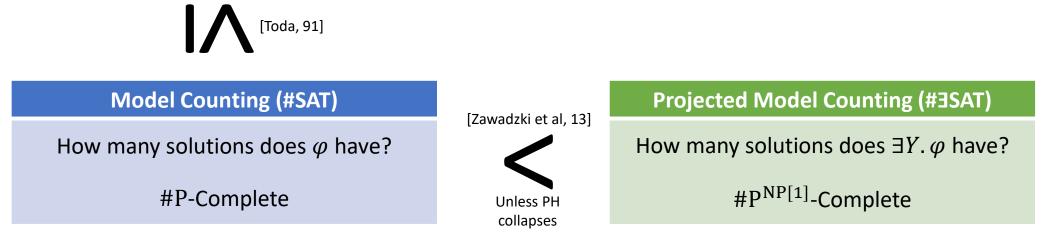
- 1. Planning: Use tree decompositions to build a graded project-join tree
- 2. Execution: Process graded project-join tree with algebraic decision diagrams (ADDs) to get the count

Experiments: Our tool ProCount is fastest on 34% of solved benchmarks

https://github.com/vardigroup/DPMC

The Problem: Projected Model Counting





 φ is a CNF formula, $Y \subseteq Vars(\varphi)$ 3

Background: Projected Model Counting

Problem: Projected Model Counting

Input: A CNF formula $\varphi(X, Y)$ over disjoint variable sets X and YOutput: $\#_X \exists_Y \varphi(X, Y)$ The number of $\vec{x} \in 2^X$ s.t. there exists $\vec{y} \in 2^Y$ where $\varphi(\vec{x}, \vec{y}) = 1$

> Everything in this work generalizes to literal-weighted projected model counting.

Example:

$$X = \{x_1, x_2\} Y = \{y_1, y_2\} \varphi(X, Y) = (x_1 \lor \neg x_2 \lor y_1) \land (x_1 \lor y_2) \land (\neg y_1 \lor \neg y_2)$$

Solutions to $\exists Y. \varphi$ are: $(x_1 = 0, x_2 = 0), (x_1 = 1, x_2 = 0)$, and $(x_1 = 1, x_2 = 1)$

Thus $\#_X \exists_Y \varphi(X, Y) = 3$

Background: Projected Model Counting

Problem: Projected Model Counting Input: A CNF formula $\varphi(X, Y)$ over disjoint variable sets X and YOutput: $\#_X \exists_Y \varphi(X, Y)$ The number of $\vec{x} \in 2^X$ s.t. there exists $\vec{y} \in 2^Y$ where $\varphi(\vec{x}, \vec{y}) = 1$

Techniques for *exact* projected model counting:

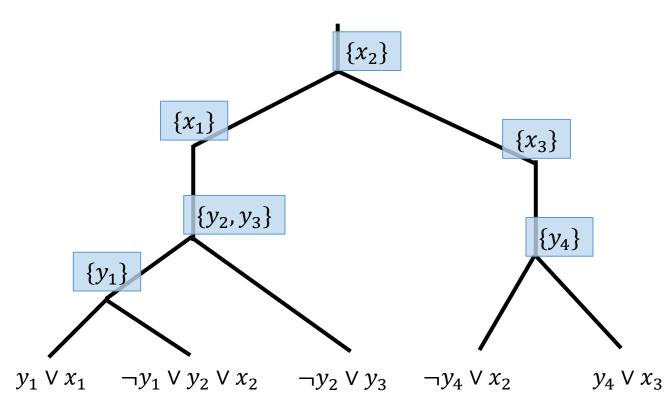
- 1. Search: Reason directly about φ using a SAT solver
 - projMC [Lagniez & Marquis, 19], reSSAT [Lee et al., 17]
- 2. Knowledge Compilation: Compile φ to a representation where counting is easy
 - D4_P [Lagniez & Marquis, 19]
- 3. Dynamic Programming: Reason about the clause structure of φ
 - nestHDB [Hecher et al., 20]
 - This work

There is also *approximate* projected model counting, but we focus on exact.

DPMC: Model Counting Algorithm

[**Dudek** et. al, 20]

- **1. Planning**: Build a project-join tree of $\varphi(X)$.
- **2.** Execution: Process project-join tree from leaves up to compute $\#_X \varphi(X)$.

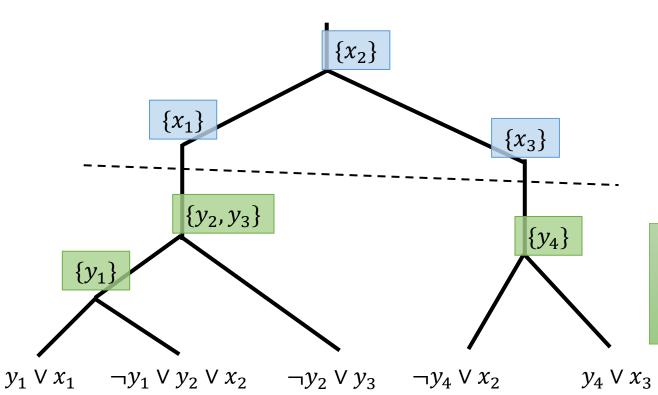


Definition: A *project-join tree* for φ is a tree where:

- 1. Each clause of φ is assigned a (unique) leaf node
- 2. Each variable of φ is assigned an internal node
- 3. For all clauses *C* and variables *z* that appear in *C*, the *z* node is an ancestor of the *C* node

Our Algorithm for Projected Model Counting

- **1. Planning**: Build an (*X*,*Y*)-graded project-join tree of $\varphi(X, Y)$.
- 2. Execution: Process graded project-join tree from leaves up to compute $\#_X \exists_Y \varphi(X, Y)$.



Definition: A *project-join tree* for φ is a tree where:

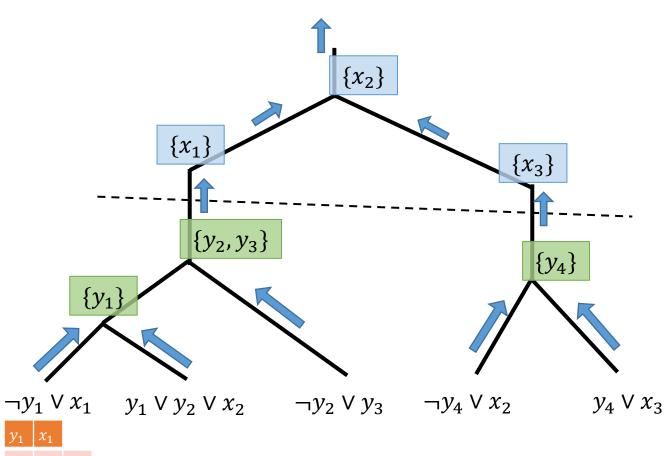
- 1. Each clause of φ is assigned a (unique) leaf node
- 2. Each variable of φ is assigned an internal node
- 3. For all clauses *C* and variables *z* that appear in *C*, the *z* node is an ancestor of the *C* node

Definition: A project-join tree is **(***X***,***Y***)**-*graded* if:

4. For all variables $x \in X$ and $y \in Y$, the y node is not an ancestor of the x node

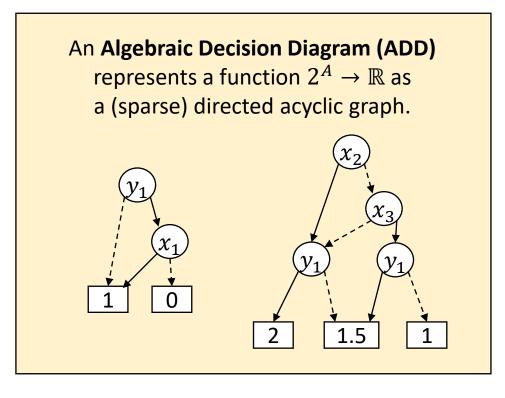
2. Execution

1 1

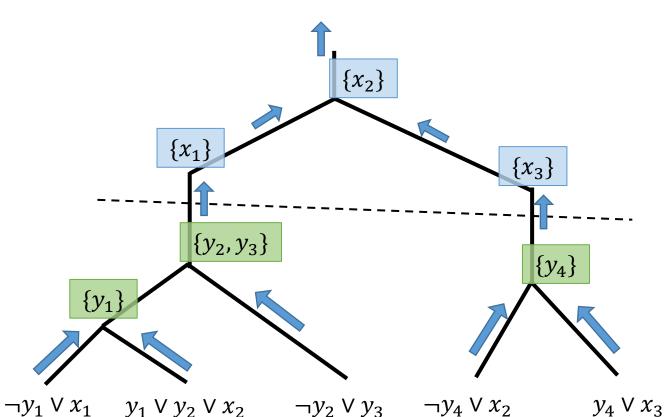


Idea:

Pass ADDs through tree from leaves to root, projecting away variables according to the labels.



2. Execution: Running Time



Idea:

Pass ADDs through tree from leaves to root, projecting away variables according to the labels.

Key performance measure:

- *Width* of the project-join tree
- I.e., the maximum number of variables needed for a single ADD
- Width can be computed upfront

Theorem: Given:

- A CNF formula $\varphi(X, Y)$
- An (X,Y)-graded project-join tree of $\varphi(X,Y)$ of width w

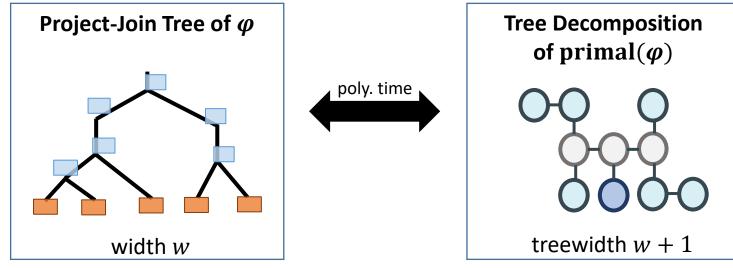
This procedure computes $\#_X \exists_Y \varphi(X, Y)$ in time $O(2^w \cdot \text{poly}(|\varphi|))$.

Projected counting (parameterized by width) with *ungraded* project-join trees is $\Omega(2^{2^w})$ assuming ETH [Fichte et al., 18]

1. Planning (Model Counting)

How to find a low-width project-join tree of φ ?

[McMahan et al., 04] [Kask et al., 05] [Markov and Shi, 05]



Decompositions show a "good" way to reason about a graph. Black-box, heuristic tree-decomposition solvers:

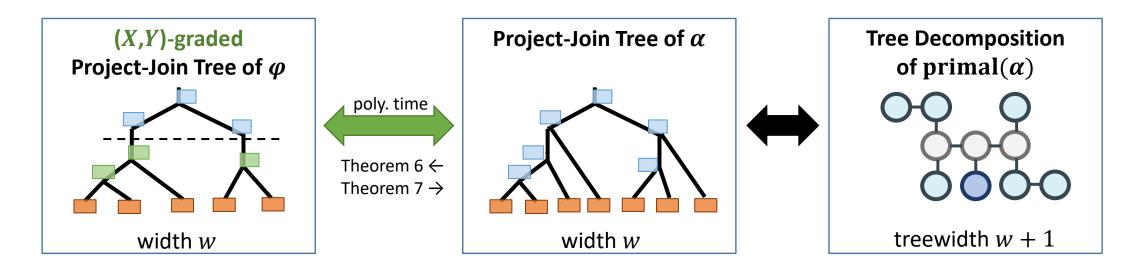
- FlowCutter [Hamann and Strasser, 18]
- Tamaki [Tamaki, 17]
- htd [Abseher et al., 17]

1. Planning (Projected Model Counting)

How to find a low-width (*X*,*Y*)-graded project-join tree of φ ?

Possible Approach? Modify tree-decomposition solvers to take into account different variable types. **Better Idea:** Use previous planners as a black box.

Add "virtual" clauses to φ to construct a new formula α so that:



1. Planning: The Reduction

Constructing α :

1. Build the *primal graph* of φ

A vertex for every variable, and an edge if two variables appear together in a clause

- 2. Examine the connected components of *Y* variables in the primal graph
- 3. For each connected component, add a "virtual clause" of the adjacent X variables to α

Example:

$$\varphi = \left\{ \begin{array}{c} \neg y_1 \lor x_1 \\ y_1 \lor y_2 \lor x_2 \\ \neg y_2 \lor y_3 \\ \neg y_4 \lor x_2 \\ y_4 \lor x_3 \end{array} \right\} \qquad \begin{array}{c} x_1 & y_1 \\ x_2 & y_1 \\ x_2 & y_2 \\ y_2 & y_3 \\ x_3 & y_4 \\ y_4 \end{pmatrix}$$

1. Planning: The Reduction

Constructing α :

1. Build the *primal graph* of φ

A vertex for every variable, and an edge if two variables appear together in a clause

- 2. Examine the connected components of *Y* variables in the primal graph
- 3. For each connected component, add a "virtual clause" of the adjacent X variables to α

Example:

$$\varphi = \left\{ \begin{array}{c} \neg y_1 \lor x_1 \\ y_1 \lor y_2 \lor x_2 \\ \neg y_2 \lor y_3 \\ \neg y_4 \lor x_2 \\ y_4 \lor x_3 \end{array} \right\} \qquad \begin{array}{c} x_1 \\ x_2 \\ x_3 \\ y_4 \\ y_4 \end{array}$$

1. Planning: The Reduction

Constructing α :

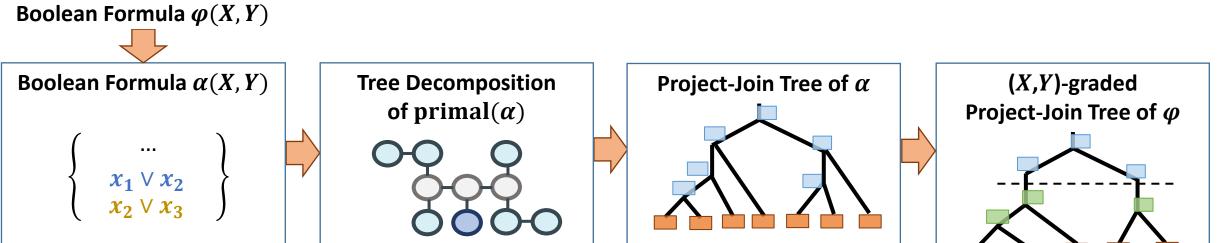
1. Build the *primal graph* of φ

A vertex for every variable, and an edge if two variables appear together in a clause

- 2. Examine the connected components of *Y* variables in the primal graph
- 3. For each connected component, add a "virtual clause" of the adjacent X variables to α

Example:

Algorithm Overview: ProCount



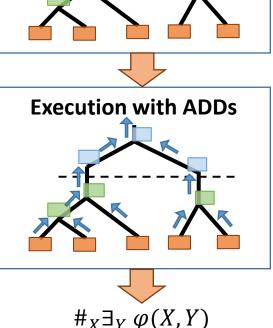
ProCount: Implemented in C++

https://github.com/vardigroup/DPMC

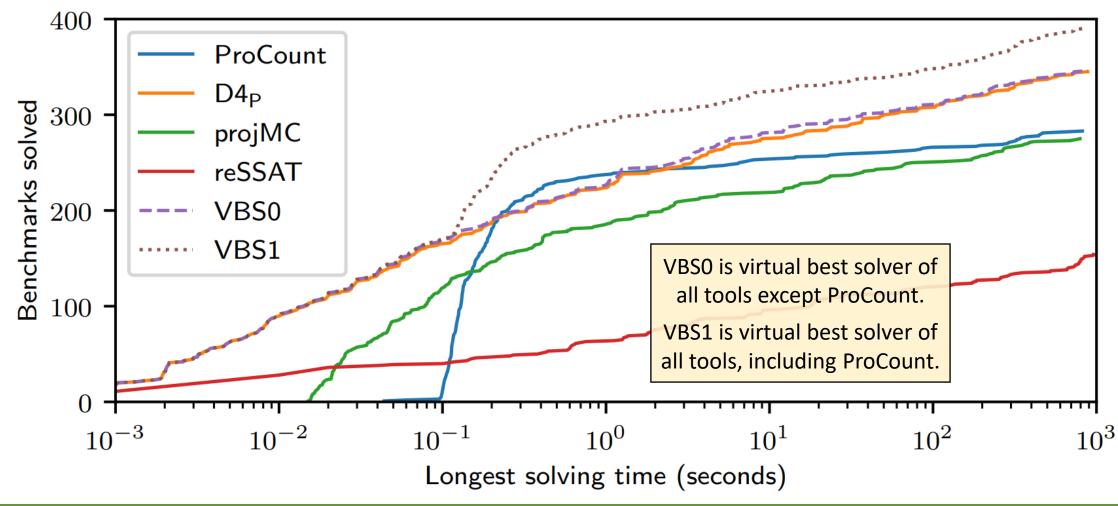
Planning: Black-box tree-decomposition solvers

• FlowCutter, Tamaki, htd

Execution: ADDs with CUDD



Experimental Evaluation on Weighted #3SAT



Our counter ProCount is the fastest tool on 131 benchmarks (34% of solved benchmarks)

* Run on a single 2.60 GHz core with 30 GB RAM. Used 849 #3SAT benchmarks from [Gupta et al., 19] and [Soos and Meel, 19]. 16

Summary and Conclusion

Problem: Weighted Projected Model Counting: $\#_X \exists_Y \varphi(X, Y)$

Our Solution: Two-phase algorithm based on graded project-join trees

- **1. Planning**: Use tree decompositions to build a graded project-join tree Using previous planning as a black box lets us use *unmodified* tree-decomposition tools
- 2. Execution: Process graded project-join tree with ADDs to get the count Using graded projected-join trees lets us avoid a double-exponential dependency on width

Experiments: ProCount improves the VBS on 34% of benchmarks solved by at least one tool <u>https://github.com/vardigroup/DPMC</u>

Future Work:

- More quantifier alternation (#QBF, MAP inference, FAQ problems)
- Planning with other graph decompositions
- Parallelization

