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Abstract. Recent work in weighted model counting proposed a unify-
ing framework for dynamic-programming algorithms. The core of this
framework is a project-join tree: an execution plan that specifies how
Boolean variables are eliminated. We adapt this framework to compute
exact literal-weighted projected model counts of propositional formu-
las in conjunctive normal form. Our key conceptual contribution is to
define gradedness on project-join trees, a novel condition requiring irrel-
evant variables to be eliminated before relevant variables. We prove that
building graded project-join trees can be reduced to building standard
project-join trees and that graded project-join trees can be used to com-
pute projected model counts. The resulting tool ProCount is competitive
with the state-of-the-art tools D4P, projMC, and reSSAT, achieving the
shortest solving time on 131 benchmarks of 390 benchmarks solved by
at least one tool, from 849 benchmarks in total.

1 Introduction

Weighted projected model counting is a fundamental problem in artificial intelli-
gence, with applications in planning [4], formal verification [34], and reliability
estimation [20]. Counting is also closely connected to sampling [32], a problem of
major interest in probabilistic reasoning [33]. The input is a set of constraints,
whose variables are divided into relevant variables X and irrelevant variables
Y . The goal is to compute the weighted number of assignments to X that, with
some assignment to Y , satisfy the constraints. This problem is complete for
the complexity class #PNP[1] [63]. There are recent tools for weighted projected
model counting [37,38].

Dynamic programming is a powerful technique that has been applied across
computer science [7]. The key idea is to solve a large problem by solving many
smaller subproblems then combining partial solutions into the final result. Dy-
namic programming is a natural framework to solve problems defined on sets
of constraints, as subproblems can be formed by partitioning the constraints.
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This framework has been instantiated into algorithms for database-query op-
timization [41], SAT solving [3, 45, 59], QBF evaluation [10], model counting
[5, 17,25,31,49], and projected model counting [22,29].

Recently, a unifying framework based on project-join trees for dynamic-
programming algorithms was proposed [17]. The key idea is to consider project-
join trees as execution plans and decompose dynamic-programming algorithms
into two phases: a planning phase, where a project-join tree is constructed from
an input problem instance, and an execution phase, where the project-join tree is
used to compute the result. The project-join-tree-based model counter DPMC [17]
was found to be competitive with state-of-the-art exact weighted model counters
[12, 36, 44, 50]. Notably, DPMC subsumes ADDMC [18], which tied with D4 [36] for
first place in the weighted track of the 2020 Model Counting Competition [23].

We adapt this framework for weighted projected model counting. The central
challenge is that there are two kinds of variables: relevant and irrelevant. This
contrasts with model counting, where all variables are relevant and can be treated
similarly. This challenge also occurs for other problems. For example, in Boolean
functional synthesis [56], some variables are free and must not be projected out.
Our solution is to model multiple types of variables by requiring the project-join
tree to be graded, meaning that irrelevant variables must be projected before
relevant variables. Our main theoretical contribution is a novel algorithm to
construct graded project-join trees from standard project-join trees. This has
two primary advantages.

The first advantage is that graded project-join trees can be constructed using
existing tools for standard project-join trees [17] in a black-box way. Tools exist
to construct standard project-join trees with tree decompositions [48] or with
constraint-satisfaction heuristics [8,13,14,35,58]. We can thus easily leverage all
current and future work in tree-decomposition solvers [2, 28, 57] and constraint-
satisfaction heuristics to produce graded project-join trees. This is crucial for
the practical success of our tool.

The second advantage of our approach is in the simplicity of the algorithm.
Given a project-join tree, its gradedness can be easily verified. Moreover, the
algorithm to compute the projected model count from a graded project-join tree
is straightforward. This gives us confidence in the correctness of our implemen-
tation. During our experimental evaluation, we found correctness errors in D4P
[37], projMC [37], and reSSAT [38]. We reported these issues to the authors, who
then fixed the tools. We believe that this work is a step towards certificates for
the verification of projected model counters, similar to certificates produced by
SAT solvers [60].

The primary contribution of this work is a dynamic-programming framework
for weighted projected model counting based on project-join trees. In particular:

1. We show that graded project-join trees can be used to compute weighted
projected model counts.

2. We prove that building graded project-join trees and project-join trees with
free variables can be reduced to building standard project-join trees.
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3. We find that project-join-tree-based algorithms make a significant contri-
bution to the portfolio of exact weighted projected model counters (D4P,
projMC, and reSSAT). Our tool, ProCount, achieves the shortest solving time
on 131 benchmarks of 390 benchmarks solved by at least one tool, from 849
benchmarks in total.

2 Preliminaries

Pseudo-Boolean Functions and Projections. A pseudo-Boolean function
over a set X of variables is a function f : 2X → R, where 2X denotes the power
set of X. A Boolean formula ϕ over variables X represents a pseudo-Boolean
function over X, denoted [ϕ] : 2X → R, where for all τ ∈ 2X , if τ satisfies ϕ
then [ϕ](τ) ≡ 1 else [ϕ](τ) ≡ 0. Operations on pseudo-Boolean functions include
product and projections. We define product as follows.

Definition 1 (Product). Let X and Y be sets of Boolean variables. The prod-
uct of functions f : 2X → R and g : 2Y → R is the function f · g : 2X∪Y → R
defined for all τ ∈ 2X∪Y by (f · g)(τ) ≡ f(τ ∩X) · g(τ ∩ Y ).

Product generalizes conjunction: if ϕ and ψ are propositional formulas, then
[ϕ] · [ψ] = [ϕ ∧ ψ].

Definition 2 (Projections). Let X be a set of Boolean variables, x be a vari-
able in X, and f : 2X → R be a pseudo-Boolean function.
– The Σ-projection of f w.r.t. x is the function Σxf : 2X\{x} → R defined for

all τ ∈ 2X\{x} by (Σxf) (τ) ≡ f(τ) + f(τ ∪ {x}).
– The ∃-projection of f w.r.t. x is the function ∃xf : 2X\{x} → R defined for

all τ ∈ 2X\{x} by (∃xf) (τ) ≡ max (f(τ), f(τ ∪ {x})).

Σ-projection is also called additive projection or marginalization. ∃-projection
is also called disjunctive projection and generalizes existential quantification: if
ϕ is a Boolean formula and x ∈ Vars(ϕ), then ∃x[ϕ] = [∃x.ϕ].

Σ-projection and ∃-projection are each independently commutative. For-
mally, for all x, y ∈ X and f : 2X → R, we assert that ΣxΣyf = ΣyΣxf and
∃x∃yf = ∃y∃xf . For all sets X = {x1, . . . , xn}, we define ΣXf ≡ Σx1

. . .Σxn
f

and ∃Xf ≡ ∃x1
. . . ∃xn

f . We also take the convention that Σ∅f ≡ f and
∃∅f ≡ f .

In general, Σ-projection does not commute with ∃-projection. For example,
if f(x, y) = x⊕ y (XOR), then Σx∃yf 6= ∃yΣxf .

Weighted Projected Model Counting. We compute the total weight, sub-
ject to a given weight function and a set of irrelevant variables, of all models of
an input Boolean formula. A formal definition follows.

Definition 3. Let ϕ be a Boolean formula, {X,Y } be a partition of Vars(ϕ),
and W : 2X → R be a pseudo-Boolean function. We say that (X,Y, ϕ,W ) is an
instance of weighted projected model counting. The W -weighted Y -projected
model count of ϕ is WPMC(ϕ,W, Y ) ≡

∑
τ∈2X (W (τ) ·maxα∈2Y [ϕ](τ ∪ α)).
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Variables in X are called relevant or additive, and variables in Y are called
irrelevant or disjunctive. For the special case of unprojected model counting, all
variables are relevant, and the W -weighted model count is WPMC(ϕ,W,∅).

Weights are usually given by a literal-weight function W ≡
∏
x∈XWx, where

the factors are functions Wx : 2{x} → R. In detail, a positive literal x has weight
Wx({x}), and a negative literal ¬x has weight Wx(∅).

Graphs. A graph G has a set V(G) of vertices, a set E(G) of undirected edges,
a function δG : V(G)→ 2E(G) that gives the set of edges incident to each vertex,
and a function εG : E(G)→ 2V(G) that gives the set of vertices incident to each
edge. Each edge must be incident to exactly two vertices. A tree is a simple,
connected, and acyclic graph. We often refer to a vertex of a tree as a node.

A rooted tree is a tree T together with a distinguished node r ∈ V(T ) called
the root. In a rooted tree (T, r), each node n ∈ V(T ) has a (possibly empty) set
of children, denoted CT,r(n), which contains all nodes n′ adjacent to n such that
all paths from n′ to r contain n. A leaf of a rooted tree T is a non-root node of
degree one. We use L(T ) to denote the set of leaves of T .

3 Using Project-Join Trees for Projected Model Counting

We first describe an existing framework for performing unprojected model count-
ing [17]. We then adapt this framework for projected model counting.

3.1 Project-Join Trees for Model Counting

This framework leverages Boolean formulas given in a factored representation,
conjunctive normal form (CNF). A clause is a non-empty disjunction of literals,
and a CNF formula is a non-empty set (conjunction) of clauses. The key idea is
to represent the computation as a rooted tree, called a project-join tree, where
leaves correspond to clauses, and internal nodes correspond to Σ-projections [17].

Definition 4 (Project-Join Tree). Let ϕ be a CNF formula. A project-join
tree of ϕ is a tuple T = (T, r, γ, π) where
– T is a tree with root r ∈ V(T ),
– γ : L(T )→ ϕ is a bijection from the leaves of T to the clauses of ϕ, and
– π : V(T ) \ L(T )→ 2Vars(ϕ) is a labeling function on internal nodes.

Moreover, T must satisfy the following two properties.
1. The set {π(n) : n ∈ V(T ) \ L(T )} is a partition of Vars(ϕ).
2. Let n ∈ V(T ) be an internal node, x be a variable in π(n), and c be a clause

of ϕ. If x ∈ Vars(c), then the leaf node γ−1(c) is a descendant of n.

A project-join tree of a CNF formula ϕ can be used to compute the weighted
model count of ϕ. The algorithm traverses the project-join tree from leaves to
root, multiplying clauses according to the tree structure and additively project-
ing out variables according to π. This is formalized with the following definition.
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Definition 5. Let T = (T, r, γ, π) be a project-join tree and W be a literal-
weight function over X. The W -valuation of a node n, denoted fWn , is

fWn ≡


[γ(n)] if n ∈ L(T )∑
π(n)

 ∏
o∈CT,r(n)

fWo ·
∏

x∈π(n)

Wx

 if n ∈ V(T ) \ L(T )

where [γ(n)] is the pseudo-Boolean function represented by the clause γ(n) ∈ ϕ.

This leads to a two-phase algorithm for computing the weighted model count
of a CNF formula ϕ. First, the planning phase builds a project-join tree (T, r, γ, π)
of ϕ. Second, the execution phase computes fWr according to Definition 5. The
following theorem asserts that fWr is the weighted model count of ϕ.

Theorem 1 ([17]). Let ϕ be a CNF formula, T = (T, r, γ, π) be a project-join
tree of ϕ, and W be a literal-weight function over Vars(ϕ). Then fWr (∅) is the
W -weighted model count of ϕ.

When computing a W -valuation, the number of variables appearing in the in-
termediate pseudo-Boolean functions significantly influences the runtime. These
variables are actually independent of W . For a node n ∈ V(T ), define Vars(n)
as follows.

Vars(n) ≡


Vars(γ(n)) if n ∈ L(T ) ⋃
o∈CT,r(n)

Vars(o)

 \ π(n) if n ∈ V(T ) \ L(T )

The W -valuation of a node n is then a pseudo-Boolean function over variables
Vars(n). If N ⊆ V(T ), for convenience, we define Vars(N) ≡

⋃
n∈N Vars(n).

The difficulty of valuation scales with the maximum number of variables
needed to compute each pseudo-Boolean function. The size of a node n, size(n),
is defined as |Vars(n)| for leaf nodes and |Vars(n) ∪ π(n)| for internal nodes. The
width of a project-join tree T = (T, r, γ, π) is width(T ) ≡ maxn∈V(T ) size(n).

Two algorithms have been proposed to construct project-join trees [17]. The
first, LG, uses tree decompositions [48], following similar work in join-query op-
timization [11,41]. The second, HTB, uses bucket elimination [13] and Bouquet’s
Method [8] with various constraint-satisfaction heuristics: maximum-cardinality
search [58], lexicographic search for perfect/minimal orders [35], and min-fill [14].

3.2 Adaptations for Projected Model Counting

In order to adapt this framework for weighted projected model counting, we aim
to modify the valuation of project-join trees to incorporate disjunctive as well
as additive projections. In particular, we must perform ∃-projections with all
disjunctive variables and Σ-projections with all additive variables.

The challenge is that Σ-projections do not commute with ∃-projections. Since
the ∃-projections appear on the inside of the expression for projected counting,
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n10
π7→ ∅

n8
π7→ {z1}

n6
π7→ {z2, z4} n1

γ7→ z2 ∨ ¬z4
n7

π7→ {z6} n2
γ7→ z1 ∨ z6

n3
γ7→ z1

n9
π7→ {z3, z5}

n4
γ7→ z3 ∨ z5

n5
γ7→ ¬z3 ∨ ¬z5

Fig. 1. A graded project-join tree T = (T, n10, γ, π) of a CNF formula ϕ with relevant
variables X = {z1, z3, z5} and irrelevant variables Y = {z2, z4, z6}. Each leaf node
corresponds to a clause of ϕ under γ. Each internal node is labeled by π with a set of
variables of ϕ. Note that T is graded with grades IX = {n8, n9, n10} and IY = {n6, n7}.

we must ensure that all ∃-projections occur before all Σ-projections while travers-
ing the project-join tree. We formalize this by requiring the project-join tree to
be graded.

Definition 6 (Graded Project-Join Tree). Let ϕ be a CNF formula with
project-join tree T = (T, r, γ, π), and let {X,Y } be a partition of Vars(ϕ). We
say that T is (X,Y )-graded if there exist IX , IY ⊆ V(T ), called grades, that
satisfy the following properties.
1. The set {IX , IY } is a partition of V(T ) \ L(T ).
2. If nX ∈ IX , then π(nX) ⊆ X.
3. If nY ∈ IY , then π(nY ) ⊆ Y .
4. If nX ∈ IX and nY ∈ IY , then nX is not a descendant of nY in the rooted

tree (T, r).

Intuitively, a project-join tree is (X,Y )-graded if all X variables are projected
(according to π) closer to the root than all Y variables in the tree. Figure 1
illustrates an exemplary graded project-join tree.

We now define a new valuation on graded project-join trees, which uses Σ-
projections at nodes in IX and ∃-projections at nodes in IY .

Definition 7 (Projected Valuation). Let (X,Y, ϕ,W ) be a weighted pro-
jected model counting instance, and let T = (T, r, γ, π) be an (X,Y )-graded
project-join tree of ϕ with grades IX and IY . The W -projected-valuation of
each node n ∈ V(T ), denoted gWn , is defined by

gWn ≡



[γ(n)] if n ∈ L(T )∑
π(n)

 ∏
o∈CT,r(n)

gWo ·
∏

x∈π(n)

Wx

 if n ∈ IX

∃
π(n)

 ∏
o∈CT,r(n)

gWo

 if n ∈ IY

where [γ(n)] is the pseudo-Boolean function represented by the clause γ(n) ∈ ϕ.

If the project-join tree is graded, then the projected valuation of the root
node is the weighted projected model count.
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Theorem 2. Let (X,Y, ϕ,W ) be an instance of weighted projected model count-
ing, and let T be a project-join tree of ϕ with root r. If T is (X,Y )-graded, then
gWr (∅) = WPMC(ϕ,W, Y ).

In the next section, we show how to build graded project-join trees.

4 Building Graded Project-Join Trees

We now show how building graded project-join trees can be reduced to build-
ing ungraded project-join trees. This allows us to use prior work on ungraded
project-join trees [17] to compute graded project-join trees.

As a building block, we first show how constructing project-join trees with
free variables can be reduced to constructing ungraded project-join trees. This
both illustrates the key ideas of our approach and appears as a subroutine in
the larger graded reduction.

4.1 Reducing Free Project-Join Trees to Ungraded Project-Join Trees

Project-join trees project out every variable in the set of corresponding clauses.
This is desirable for applications where all variables are processed in the same
way, e.g., model counting. In many other applications, however, it is desirable
to process a set of clauses while leaving specified free variables untouched.

We model free variables by ensuring that they are projected in the project-
join tree as late as possible, at the root node. Thus free variables must be “kept
alive” throughout the entire tree.

Definition 8. Let F be a set of variables, and let T = (T, r, γ, π) be a project-
join tree. We say that T is F -free if F = π(r).

Note that Definition 8 is a much stronger restriction than Definition 6. In
particular, if a project-join tree T of a CNF formula ϕ is F -free, then T is also
(F, Vars(ϕ) \ F )-graded.

We now reduce the problem of building F -free project-join trees to building
ungraded project-join trees. One approach is to build a project-join tree while
ignoring all variables in F , then insert the variables in F as projections at the
root. However, building minimal-width project-join trees while ignoring variables
may not produce minimal-width F -free project-join trees for the full formula.

Instead, we adapt a similar reduction in the context of tensor networks [16]
for the context of project-join trees. The key idea is to add to ϕ a virtual clause
that contains all variables in F . For a set Z of variables, let virtual(Z) denote
a fresh clause with variables Z. Project-join trees of ϕ∪{virtual(F )} can then
be used to find F -free project-join trees of ϕ. This virtual clause can be viewed
as a goal atom in DataLog [39].

This reduction is presented as Algorithm 1. The input T is a project-join
tree of ϕ∪{CF }, where CF is a virtual clause with variables F . On lines 2-6, we
rotate T so that the leaf node s corresponding to CF becomes the root node.
This rotation does not increase the width. Projecting F at the new root s still
does not increase the width. Thus we obtain an F -free project-join tree of ϕ.
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Algorithm 1: Building an F -free project-join tree of a CNF formula

Input: ϕ: a CNF formula
Input: F : a subset of Vars(ϕ)
Input: T = (T, r, γ, π): a project-join tree of ϕ ∪ {CF }, where

CF = virtual(F ) is a fresh clause with variables F
Output: an F -free project-join tree of ϕ

1 s← γ−1(CF ) // s will be the root node of the returned project-join tree
2 π′ ← a mapping where π′(n) = ∅ for all n ∈ V(T ) \ L(T ) // π′ will be the

labeling function of the returned project-join tree
3 for y ∈ Vars(ϕ) \ F
4 ϕy = {C ∈ ϕ : y ∈ Vars(C)}
5 i← lowest common ancestor of

{
γ−1(C) : C ∈ ϕy

}
in the rooted tree (T, s)

6 π′(i)← π′(i) ∪ {y} // project out y at the lowest allowable node

7 π′(s)← F // project out variables in F at the new root s
8 γ′ ← γ \ {s 7→ CF } // γ′ is the bijection γ without the pair (s, CF )
9 return (T, s, γ′, π′)

We state the correctness of Algorithm 1 in the following theorem. In partic-
ular, the width of the output F -free project-join tree is no worse than the width
of the unrestricted input tree.

Theorem 3. Let ϕ be a CNF formula, and let F ⊆ Vars(ϕ). If T is a project-
join tree of ϕ ∪ {virtual(F )}, then Algorithm 1 returns an F -free project-join
tree of ϕ of width at most width(T ).

We also prove that Algorithm 1 is optimal. That is, a minimal-width project-
join tree for ϕ ∪ {CF } produces a minimal-width F -free project-join tree for ϕ.

Theorem 4. Let ϕ be a CNF formula, F be a subset of Vars(ϕ), and w be a
positive integer. If there is an F -free project-join tree of ϕ of width w, then there
is a project-join tree of ϕ ∪ {virtual(F )} of width w.

4.2 Reducing Graded Project-Join Trees to Free Project-Join Trees

In this section, we use free project-join trees as a building block to construct
graded project-join trees. We present this framework as Algorithm 2. The key
idea is to create a graded project-join tree by combining many free project-join
trees for subformulas. We first combine clauses to remove Y variables, then we
combine project-join-tree components to remove X variables.

In detail, on line 1, we partition the clauses of ϕ into blocks that share Y
variables. On line 3, we find a project-join tree TN for each block N . This tree
must keep all X variables free, i.e., must be (Vars(N)∩X)-free. The trees {TN}
collectively project out all Y variables. On line 6, we construct a project-join
tree T that will guide the combination of all trees in {TN} while projecting out
all X variables, where each TN is represented by the corresponding virtual clause
CN . On lines 7-9, we hook the trees in {TN} together as indicated by T .
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Algorithm 2: Building a graded project-join tree of a CNF formula

Input: X: a set of Σ-variables
Input: Y : a set of ∃-variables where X ∩ Y = ∅
Input: ϕ: a CNF formula where Vars(ϕ) = X ∪ Y
Output: T : an (X,Y )-graded project-join tree of ϕ

1 partition← GroupBy(ϕ, Y ) // group clauses that share Y variables
2 for N ∈ partition
3 TN ← BuildComponent(N, Vars(N) ∩X) // build a (Vars(N) ∩X)-free

project-join tree of N
4 TN ← TN with all projections at the root of TN removed
5 CN ← virtual(Vars(N) ∩X)

6 T ← BuildComponent ({CN : N ∈ partition} ,∅) // build a project-join tree
from virtual clauses CN

7 for N ∈ partition
8 `N ← leaf of T corresponding to CN
9 T ← T with `N replaced by TN

10 return T

The function GroupBy(ϕ, Y ) in Algorithm 2 partitions the clauses of ϕ so
that every pair of clauses that share a variable from Y appear together in the
same block of the partition. A formal definition follows.

Definition 9. Let ϕ be a set of clauses and Y be a subset of Vars(ϕ). Define
∼Y⊆ ϕ × ϕ to be the relation such that, for clauses c, c′ ∈ ϕ, we have c ∼Y c′

if and only if Vars(c) ∩ Vars(c′) ∩ Y 6= ∅. Then GroupBy(ϕ, Y ) is the set of
equivalence classes of the reflexive transitive closure of ∼Y .

The intuition is that two clauses in the same block in GroupBy(ϕ, Y ) must
be combined to project out all variables in Y . Conversely, clauses that appear in
separate blocks need not be combined in order to project out all variables in Y .

In Algorithm 2, each function call BuildComponent(α, F ) returns an F -
free project-join tree of α, where α is a set of clauses and F ⊆ Vars(α).
BuildComponent can be implemented by implementing Algorithm 1 on top of an
algorithm for building ungraded project-join trees. For example, in Section 5, we
consider two implementations of Algorithm 2 built on top of the two algorithms
to construct standard project-join trees [17] discussed at the end of Section 3.1.

We next state the correctness of Algorithm 2 and show that the width of the
output graded project-join tree is no worse than the widths of the trees used for
the components.

Theorem 5. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
w be a positive integer. Assume each call to BuildComponent(α, F ) returns an
F -free project-join tree for α of width at most w. Then Algorithm 2 returns an
(X,Y )-graded project-join tree for ϕ of width at most w.

Although Algorithm 2 constructs a sequence of small ungraded project-join
trees, it is sufficient to compute a single ungraded project-join tree from which all
smaller trees can be extracted. This is demonstrated by the following theorem.
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Theorem 6. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
ψ be the CNF formula ϕ ∪ {virtual(Vars(N) ∩X) : N ∈ GroupBy(ϕ, Y )}. For
every positive integer w, if there is a project-join tree T ′ for ψ of width w, then
there is an (X,Y )-graded project-join tree for ϕ of width at most w.

The key idea of the proof is to answer every BuildComponent call in Algorithm
2 by extracting a subtree of T ′ and applying Theorem 3.

We show in the following theorem that this approach is optimal. Thus (X,Y )-
graded project-join trees of ϕ are equivalent to project-join trees of ψ.

Theorem 7. Let ϕ be a CNF formula, {X,Y } be a partition of Vars(ϕ), and
ψ be the CNF formula ϕ ∪ {virtual(Vars(N) ∩X) : N ∈ GroupBy(ϕ, Y )}. For
every positive integer w, if there is an (X,Y )-graded project-join tree for ϕ of
width w, then there is a project-join tree for ψ of width w.

Note that requiring the project-join tree to be graded may significantly in-
crease the width of available project-join trees. Theorems 5 and 7 indicate that
our algorithm for constructing a graded project-join tree pays no additional cost
in width beyond what is required by gradedness.

5 Experimental Evaluation

To implement our projected model counter ProCount, we modify the unprojected
model counter DPMC, which is based on ungraded project-join trees [17]. The DPMC
framework includes: (1) the LG planner that uses tree-decomposition techniques,
(2) the HTB planner that uses constraint-satisfaction heuristics, and (3) the DMC

executor that uses algebraic decision diagrams (ADDs). We generalize these three
components to support graded project-join trees and projected model counting.

We conduct three experiments to address the following research questions.
(RQ1) In the planning phase (for constructing project-join trees), how do tree-

decomposition techniques compare to constraint-satisfaction heuristics?
(RQ2) In the execution phase, how do different ADD variable orders compare?
(RQ3) How does ProCount compare to other exact weighted projected counters?

To answer RQ1, in Experiment 1, we compare the planner LG (which uses
tree decompositions) and the planner HTB (which uses constraint-satisfaction
heuristics). LG uses the tree decomposers FlowCutter [28], htd [2], and Tamaki

[57]. HTB implements four heuristics for variable ordering: maximal-cardinality
search (MCS) [58], lexicographic search for perfect/minimal orders (LP/LM) [35],
and min-fill (MF) [14]. HTB also implements two clause-ordering heuristics: bucket
elimination (BE) [13] and Bouquet’s Method (BM) [8].

To answer RQ2, in Experiment 2, we compare variable-ordering heuristics
for the ADD-based executor DMC. An ADD [6] is a directed acyclic graph that
compactly represents a pseudo-Boolean function. An ADD requires a variable
order, which strongly influences the compactness of the ADD. DMC implements
four aforementioned variable-ordering heuristics: MCS, LP, LM, and MF. Note that
we use ADDs throughout the entire execution for consistency, although binary
decision diagrams [9] or SAT solvers would suffice to valuate existential nodes.
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Fig. 2. Experiment 1 compares the tree-decomposition-based planner LG to the
constraint-satisfaction-based planner HTB. A planner “solves” a benchmark when it
finds a project-join tree of width 30 or lower. For HTB, we only show the variable-
ordering heuristic MCS; the LP, LM, and MF curves are qualitatively similar.

To answer RQ3, in Experiment 3, we compare ProCount to state-of-the-art
exact weighted projected model counters D4P [37], projMC [37], and reSSAT [38].

We use 849 CNF benchmarks gathered from two families. The first family
contains 90 formulas and was used for weighted projected sampling [27]. For
each benchmark in this family, a positive literal x has weight 0 < Wx({x}) < 1,
and a negative literal ¬x has weight W (∅) = 1 −Wx({x}). The second family
contains 759 formulas and was used for unweighted projected model counting
[52]. We add weights to this family by randomly assigning Wx({x}) = 0.4 and
Wx(∅) = 0.6 or vice versa to each variable x. All 849 benchmarks are satisfiable,
as verified by the SAT solver CryptoMiniSat [53]. We run all experiments on
single CPU cores of a Linux cluster with Intel Xeon E5-2650v2 processors (2.60-
GHz) and 30 GB of RAM. All code and data are available (https://github.
com/vardigroup/DPMC).

5.1 Experiment 1: Comparing Planners

In this experiment, we run all configurations of the planners LG and HTB on
each CNF benchmark with a timeout of 100 seconds. We present results in
Figure 2. Each point (x, y) on a plotted curve indicates that: within x seconds,
on each of y benchmarks, the first graded project-join tree produced by the
corresponding planner has width at most 30. We choose 30 because previous work
shows that executors do not handle larger project-join trees well [16, 17]. While
LG is an anytime tool that produces several trees (of decreasing widths) for each
benchmark, we only use the first tree. The tree-decomposition-based planner LG
produces more low-width trees than the constraint-satisfaction-based planner
HTB. Moreover, for LG, the tree decomposer FlowCutter is faster than htd and
Tamaki. Thus we use LG with FlowCutter in ProCount for later experiments.

https://github.com/vardigroup/DPMC
https://github.com/vardigroup/DPMC
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Fig. 3. Experiment 2 compares variable-ordering heuristics (MCS, LP, LM, and MF) for
the ADD-based executor DMC. MCS and LP are significantly faster than LM and MF.

5.2 Experiment 2: Comparing Execution Heuristics

In this experiment, we take all 346 graded project-join trees produced by LG

with FlowCutter in Experiment 1 and run DMC for 100 seconds with each ADD
variable-ordering heuristic. We present the execution time of each heuristic (ex-
cluding planning time) in Figure 3. We observe that MCS and LP outperform LM

and MF. We use DMC with MCS in ProCount for Experiment 3.

5.3 Experiment 3: Comparing Weighted Projected Model Counters

Informed by Experiments 1 and 2, we choose LG with FlowCutter as the plan-
ner and DMC with MCS as the executor for our framework ProCount. We com-
pare ProCount with the weighted projected model counters D4P, projMC, and
reSSAT. Since all benchmarks are satisfiable with positive literal weights, the
model counts must be positive. Thus, for all tools, we exclude outputs that are
zero (possible floating-point underflow). We are confident that the remaining
results are correct. Differences in model counts among tools are less than 10−6.

Figure 4 shows the performance of ProCount, D4P, projMC, and reSSAT with
a 1000-second timeout. Additional statistics are given in Table 1. Of 849 bench-
marks, 390 are solved by at least one of four tools. ProCount achieves the shortest
solving time on 131 benchmarks, including 44 solved by none of the other three
tools. Between the two virtual best solvers in Figure 4, VBS1 (all four tools) is
significantly faster than VBS0 (three existing tools, without ProCount).

Project-Join Tree Width and Computation Time To identify which type
of benchmarks can be solved efficiently by ProCount, we study how the perfor-
mance of each projected model counter varies with the widths of graded project-
join trees. In particular, for each benchmark, we consider the width of the first
graded project-join tree produced by the planner LG (with FlowCutter) in Ex-
periment 1. Figure 5 shows how these widths relate to mean PAR-2 scores of
projected model counters. ProCount seems to be the fastest solver on instances
for which there exist graded project-join trees of widths between 50 and 100.
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Fig. 4. Experiment 3 compares our framework ProCount to the state-of-the-art exact
weighted projected model counters D4P, projMC, and reSSAT. VBS0 is the virtual best
solver of the three existing tools, excluding ProCount. VBS1 includes all four tools.
Adding ProCount significantly improves the portfolio of projected model counters.

6 Related Work

There are a number of recent tools for projected model counting. For example,
D4P uses decision decomposable negation normal form [37], projMC leverages
disjunctive decomposition [37], and reSSAT combines counting with SAT tech-
niques [38]. While our focus in this work is on (deterministic) exact weighted
projected model counting, it is worth mentioning that various relaxations have
also been studied, e.g., probabilistic [51], approximate [21,26,52], or unweighted
[4, 29,42,63] projected model counting.

A recent framework for projected counting is nestHDB [29], a hybrid solver.
Similar to our framework, nestHDB includes a planning phase (using the tree-
decomposition tool htd [2]) and an execution phase (using the database engine
Postgres [55] and the projected counter projMC [37], alongside other tools).
We predict that nestHDB may benefit from switching the projected-counting
component to ProCount, which was often faster than projMC in Experiment 3.
While we were unable to run a full experimental comparison1 with nestHDB,
we evaluated nestHDB against ProCount on 90 benchmarks [27] (with weights
removed) using a single CPU core of an Intel i7-7700HQ processor (2.80-GHz)
with 30 GB of RAM. ProCount and nestHDB respectively solved 69 and 59
benchmarks, with a 100-second timeout. The mean PAR-2 scores for ProCount

and nestHDB were 47 and 87. Further comparison is needed in future work.
Our proposed graded project-join trees can be seen as a specialization of

structure trees [54] to the case of projected model counting. Sterns and Hunt [54]
suggest constructing structure trees by manually modifying tree decomposers to

1 nestHDB is an unweighted tool, but the benchmarks in Section 5 are weighted. More-
over, the cluster used in Section 5 does not support database management systems.
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Table 1. Experiment 3 compares our framework ProCount to the state-of-the-art exact
weighted projected model counters D4P, projMC, and reSSAT. There are 390 benchmarks
solved by at least one of four tools. By including ProCount, the portfolio of tools
solves 44 more benchmarks and achieves shorter solving time on 87 other benchmarks.
For each tool-benchmark pair, the PAR-2 score is the runtime if the tool solves the
benchmark (within time and space limits) or twice the 1000-second timeout otherwise.

Solver
Number of benchmarks solved (of 849)

Mean PAR-2 score
Uniquely (solved by no other) In shortest time In total

ProCount 44 131 283 1341

D4P 50 235 345 1203

projMC 0 8 275 1362

reSSAT 1 16 154 1659

VBS0 NA NA 346 1199

VBS1 NA NA 390 1099

consider only structure trees respecting the variable quantification order (i.e., to
consider gradedness directly). In this work, we take a different approach by using
existing tools for standard project-join trees (in particular, tree decomposers) in
a black-box way. This is crucial for the practical success of our tool, as we can
leverage continual progress in tree decomposition.

Projected model counting is also a special case of functional aggregate queries
(FAQs) [1]. Our graded project-join trees can be seen as a specialization of
FAQ variable orders. Theorem 7.5 of [1] gives an algorithm for constructing
an FAQ variable order from a sequence of tree decompositions, which, in the
context of projected model counting, is equivalent to the technique we discussed
in Section 4.1 of ignoring relevant variables while planning to project irrelevant
variables. In contrast, our approach may find lower-width graded project-join
trees by incorporating relevant variables even when planning to project irrelevant
variables. This improvement may be lifted to the FAQ framework in future work.

It is worth comparing our theoretical results to a different algorithm for pro-

jected counting [24], which runs on a formula ϕ in time 22
O(k) · p(ϕ), where k is

the primal treewidth [49] of ϕ, and p scales polynomially in the size of ϕ. Assum-
ing the Exponential-Time Hypothesis [30], all FPT algorithms parameterized by
primal treewidth must be double-exponential [24]. On the other hand, by Theo-
rem 5 in [17] and Theorem 6 here, our algorithm, based on graded project-join
trees, runs in time 2O(k′), where k′ is the primal treewidth of ψ (which we call
the {X,Y }-graded treewidth of ϕ). While k′ is larger than k, we can see that k′

is significantly smaller than 2k on many benchmarks.
In some sense, projected model counting on Boolean formulas is a dual prob-

lem of maximum a posteriori (MAP) inference [40,43,62] on Bayesian networks
[47]: a projected model count has the form

∑
X maxY f(X,Y ), while a MAP

probability has the form maxY
∑
X f(X,Y ). Both problems can be solved using

variable elimination, but an elimination order may not freely interleave X vari-
ables with Y variables. A valid variable order induces an evaluation tree (similar
to a project-join tree) [46]. As mentioned in [46], exact MAP algorithms construct
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Fig. 5. We plot mean PAR-2 scores (in seconds) against mean project-join tree widths.
Each projected counter in Experiment 3 corresponds to a plotted curve, on which a
point (x, y) indicates that: x is the central moving average of 10 consecutive project-
join tree widths 1 ≤ w1 < w2 < . . . < w10 ≤ 99, and y is the average PAR-2 score of
the benchmarks whose project-join trees have widths w s.t. w1 ≤ w ≤ w10. We observe
that the performance of ProCount degrades as the project-join tree width increases.
However, ProCount tends to be the fastest solver on benchmarks whose graded project-
join trees have widths roughly between 50 and 100.

evaluation trees using constraint-satisfaction heuristics (similar to our planner
HTB). Our work goes further by constructing low-width graded project-join trees
using tree-decomposition techniques (with our planner LG) and by performing
efficient computations using compact ADDs (with our executor DMC).

7 Discussion

We adapted an existing dynamic-programming framework [17] to perform pro-
jected model counting by requiring project-join trees to be graded. This frame-
work decomposes projected model counting into two phases. First, the planning
phase produces a graded project-join tree from a CNF formula. Second, the
execution phase uses the this tree to guide the computation of the projected
model count of the formula w.r.t. a literal-weight function. We proved that al-
gorithms for building project-join trees can be used to build graded project-join
trees. Our framework ProCount is competitive with the exact weighted projected
model counters D4P [37], projMC [37], and reSSAT [38]. ProCount considerably
improves the virtual best solver and thus is a valuable addition to the portfolio.

In future work, ProCount can be generalized for maximum model counting
[26] and functional aggregate queries [1]. Another research direction is multicore
programming. The planning tool LG can be improved to run tree decomposers in
parallel [19] in a portfolio approach [61]. One can also make the execution tool
DMC support multicore ADD packages (e.g., Sylvan [15]).
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A Additional Experimental Evaluation

A.1 Experiment 1: Comparing Planners

Figure 6 illustrates how the planner LG compares to the planner HTB across
several settings. LG is an anytime tool, which produces better and better project-
join trees the longer it runs. In Experiment 1, within 100 seconds, each LG

setting may produce several project-join trees (of decreasing widths) for a single
benchmark. Figure 6 plots the time of the first such project-join tree of width
at most 30. HTB is a one-shot tool, which produces only one project-join tree for
each benchmark.
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Fig. 6. Experiment 1 compares the tree-decomposition-based planner LG to the
constraint-satisfaction-based planner HTB. LG can be used with a tree decomposer
(FlowCutter [28], htd [2], or Tamaki [57]). HTB requires a variable-ordering heuristic
(MCS [58], LP/LM [35], or MF [14]) and a clause-ordering heuristic (BE [13] or BM [8]). A
planner “solves” a benchmark when it eventually finds a project-join tree of width 30
or lower. LG is an anytime tool that can output several trees (of decreasing widths) for
each benchmark. On this plot, for each LG benchmark, we use the time of the first tree
whose width is at most 30. In contrast, in Figure 2, we discard an LG benchmark when
the first tree has width over 30, even if a later tree has width at most 30.
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A.2 Experiment 2: Comparing Execution Heuristics

Figure 7 shows the performance of four ADD variable-ordering heuristics with
the executor DMC in 100 seconds (execution time only, excluding planning time).
The graded project-join trees here are taken from Experiment 1. Recall that LG
is an anytime tool that may produce several project-join trees (of decreasing
widths) for each benchmark. We measure the execution time using the first tree
and the last tree produced within 100 seconds for each benchmark.
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Fig. 7. Experiment 2 compares various variable-ordering heuristics (MCS, LP, LM, and
MF) for the ADD-based executor DMC. The graded project-join trees here were produced
by the planner LG with the tree decomposer FlowCutter from Experiment 1. LG is an
anytime tool that may produce several trees of decreasing widths per benchmark.
Nevertheless, across all four variable-ordering heuristics, there is little difference in
execution time between using the first tree and using the last tree (planning time is
excluded).

A.3 Experiment 3: Comparing Weighted Projected Model Counters

Figure 8 illustrates how six combinations of three LG tree-decomposition tools
(FlowCutter, htd, and Tamaki) and two DMC variable-ordering heuristics (MCS
and LP) compare in 1000 seconds. We exclude the planner HTB because it is
slower than LG in Experiment 1. We also exclude the variable-ordering heuristics
LM and MF because they are slower than MCS and LP in Experiment 2.
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Fig. 8. This plot compares different combinations of an LG tree decomposer
(FlowCutter, htd, or Tamaki) and a DMC variable-ordering heuristic (MCS or LP) for
our framework ProCount. We choose LG with FlowCutter and DMC width MCS as the
representative setting of ProCount to compete with existing projected model counters.

B Proofs

B.1 Proof of Theorem 2

When performing a product followed by a projection, it is often possible to
perform the projection first. This is known as early projection [41], which forms
the core of the proof of Theorem 2.

Theorem 8 (Early Projection). Let X and Y be sets of variables. For all
functions f : 2X → R and g : 2Y → R, if x ∈ X \ Y , then Σx(f · g) = (Σxf) · g
and ∃x(f · g) = (∃xf) · g.

We ultimately prove Theorem 2 by structural induction. It is therefore help-
ful to have some additional notations for subtrees of project-join trees. Let
(T, r, γ, π) be a project-join tree for ϕ, and let n ∈ V(T ). Denote by S(n) ⊆
V(T ) the set of all descendants of n in T (including n itself). Let P (n) =⋃
o∈S(n)\L(T ) π(o) be the set of all variables projected in S(n), and let Φ(n) =

{γ(`) : ` ∈ L(T ) ∩ S(n)} be the set of all clauses that appear as leaves in S(n).
The key property of project-join trees is that variables projected in one

branch of the tree cannot appear in sibling branches of the tree. Formally:
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Lemma 1. In a project-join tree (T, r, γ, π), let n be an internal node with chil-
dren o 6= q. Then P (o) ∩ Vars (Φ(q)) = ∅.

Proof. Let variable x ∈ P (o). Notice that x ∈ π(s) for some internal node s that
is a descendant of o. Assume there is an arbitrary clause c ∈ ϕ s.t. x appears
in c. By the last property in Definition 4, the corresponding leaf γ−1(c) is a
descendant of s and thus a descendant of o. So x appears in no descendant leaf
of q (as q is a sibling of o in the tree T ). Thus x /∈ Vars(Φ(q)). Since x ∈ P (o)
is arbitrary, we conclude that P (o) ∩ Vars (Φ(q)) = ∅.

Using Lemma 1, we can prove that projected-valuations have an equivalent,
non-recursive definition:

Lemma 2. Let (X,Y, ϕ,W ) be an instance of weighted projected model count-
ing, and let T be an (X,Y )-graded project-join tree for ϕ.

Define, for every node n of T ,

hWn =

 ∏
C∈Φ(n)

[C]

 ·
 ∏
x∈P (n)∩X

Wx

 .

Then for every node n of T ,

gWn =
∑

P (n)∩X
∃

P (n)∩Y

hWn . (1)

Proof. We employ structural induction on n ∈ V(T ). In the base case, n is a leaf.

Then P (n) = ∅ and Φ(n) = {γ(n)}. Thus hWn =
(∏

C∈{γ(n)}[C]
)
·
(∏

x∈∅Wx

)
=

[γ(n)], so the right-hand side of Equation (1) is
∑

∅∃∅ h
W
n = hWn = [γ(n)],

which is exactly gWn .
In the inductive case, n is an internal node of T and, for each o ∈ CT,r(n),

we have gWo =
∑
P (o)∩X ∃P (o)∩Y h

W
o .

Consider the product∏
o∈CT,r(n)

gWo =
∏

o∈CT,r(n)

∑
P (o)∩X
∃

P (o)∩Y

hWo . (2)

By Lemma 1, for distinct o, q ∈ CT,r(n), we know P (o) ∩ Vars(Φ(q)) = ∅.
Thus P (o) ∩ Vars(hWq ) = ∅ as well. We can therefore apply Theorem 8 to
Equation (2) to get that∏

o∈CT,r(n)

gWo =
∑
A∩X

∏
o∈CT,r(n)

∃
P (o)∩Y

hWo =
∑
A∩X
∃
A∩Y

∏
o∈CT,r(n)

hWo (3)

where A =
⋃
o∈CT,r(n)

P (o).
Let IX and IY be the grades of T . By Definition 6, either n ∈ IX or n ∈ IY .

We divide the inductive case further into these two cases.
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Case: n ∈ IY . Then for each p ∈ S(n), by Definition 6, we have p ∈ IY , so
π(p) ⊆ Y . Thus A ⊆ Y . By Definition 7 and Equation (3), we have

gWn = ∃
π(n)

∏
o∈CT,r(n)

gWo = ∃
π(n)
∃
A

∏
o∈CT,r(n)

hWo = ∃
P (n)

∏
o∈CT,r(n)

hWo .

We therefore conclude that

gWn = ∃
P (n)

∏
o∈CT,r(n)

∏
C∈Φ(o)

[C] = ∃
P (n)

∏
C∈Φ(n)

[C] = ∃
P (n)

hWn .

Case: n ∈ IX . Thus π(n) ⊆ X. By Definition 7 and Equation (3), we have

gWn =
∑
π(n)

 ∏
o∈CT,r(n)

gWo ·
∏

x∈π(n)

Wx


=
∑
π(n)

∑
A∩X
∃
A∩Y

∏
o∈CT,r(n)

hWo

 · ∏
x∈π(n)

Wx

 .

Since π(n) ∩ A = ∅, we can apply Theorem 8 (in the other direction, which
undoes early projection) to get that

gWn =
∑
π(n)

∑
A∩X
∃
A∩Y

 ∏
o∈CT,r(n)

hWo ·
∏

x∈π(n)

Wx

 .

Finally, observe that π(n)∪A = P (n) and that hWn =
∏
o∈CT,r(n)

hWo ·
∏
x∈π(n)Wx.

We therefore conclude that

gWn =
∑

P (n)∩X
∃

P (n)∩Y

 ∏
o∈CT,r(n)

hWo ·
∏

x∈π(n)

Wx

 =
∑

P (n)∩X
∃

P (n)∩Y

hWn .

Moreover, this non-recursive definition is equivalent to the weighted projected
model count at the root node.

Theorem 2 Let (X,Y, ϕ,W ) be an instance of weighted projected model count-
ing, and let T be a project-join tree for ϕ with root r. If T is (X,Y )-graded, then
gWr (∅) = WPMC(ϕ,W, Y ).

Proof. As r is the root of the project-join tree, P (r) = X ∪ Y and Φ(r) = ϕ. By
Lemma 2,

gWr =
∑
X
∃
Y

hWn =
∑
X
∃
Y

∏
C∈ϕ

[C]

 ·(∏
x∈X

Wx

)
=
∑
X
∃
Y

[ϕ] ·W.

Thus gWr (∅) is exactly the W -weighted Y -projected model count of ϕ.
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B.2 Proof of Theorem 3

Theorem 3 Let ϕ be a CNF formula, and let F ⊆ Vars(ϕ). If T is a project-
join tree for ϕ∪ {virtual(F )}, then Algorithm 1 returns an F -free project-join
tree for ϕ of width at most width(T ).

Proof. Let CF = virtual(F ). Let T = (T, r, γ, π) be the input project-join tree
for ϕ∪{CF }, and let T ′ = (T, s, γ′, π′) be the output of Algorithm 1. Moreover,
let VarsT (n) and VarsT ′(n) denote the sets of variables at a node n of T and
T ′ respectively.

First, we prove that T ′ is a project-join tree. Since γ is a bijection onto
ϕ ∪ {CF } and we have removed both CF and the leaf corresponding to CF , γ′

is indeed a bijection onto ϕ. Moreover, since every variable appears in exactly
one set in the image of π′, the first condition of Definition 4 is satisfied. Finally,
each variable y is projected out at the lowest common ancestor of all leaves
corresponding to clauses that contain y; thus the second condition of Definition
4 is satisfied. It follows that T ′ is a project-join tree.

Second, we prove that T ′ is F -free. Since s has degree 1, s is never the lowest
common ancestor of a set of leaves of T ′. Thus π′(s)\F = ∅. By line 7, it follows
that π′(s) = F , so T ′ is F -free.

Finally, we prove that the width of T ′ is at most width(T ). To do this, if S
is a project-join tree and n is a node of S, define relS(n) ≡ VarsS(n) for leaf
nodes and relS(n) ≡ VarsS(n)∪ π(n) for internal nodes. Notice the size of n in
S is exactly |relS(n)|, so the width of S is exactly the maximum size of relS(n)
across all nodes n.

Consider an arbitrary node n ∈ V(T ) \ {s}. Define:

A(n) = {y : ∃` ∈ L(T ) s.t. ` is a descendant of n in the rooted tree (T, s) and y ∈ relT ′(γ′(`))}
B(n) = {x ∈ Vars(ϕ) : ∃`, `′ ∈ L(T ) s.t. n is between `, `′ in (T, r) and x ∈ relT (γ(`)) ∩ relT (γ(`′))}
B′(n) = {x ∈ Vars(ϕ) : ∃`, `′ ∈ L(T ) s.t. n is between `, `′ in (T, s) and x ∈ relT ′(γ′(`)) ∩ relT ′(γ′(`′))}

Note that a node n is between `, `′ ∈ V(T ) if n is on the unique shortest path
between ` and `′. There are several key relationships among A(n), B(n), B′(n),
relT (n), and relT ′(n):

1. By the construction in Algorithm 1, we know relT ′(n) \F = B′(n) \F and
relT ′(n) ∩ F = A(n) ∩ F .

2. Since γ and γ′ agree on all nodes of T except for s, we know B(n) \ F =
B′(n) \ F .

3. Since Vars(CF ) = F , we know B(n) ∩ F = A(n) ∩ F .
4. By Property 2 of Definition 4, B(n) ⊆ relT (n).
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Putting these relationships together, we observe that:

relT ′(n) = (relT ′(n) \ F ) ∪ (relT ′(n) ∩ F )

= (B′(n) \ F ) ∪ (A(n) ∩ F )

= (B(n) \ F ) ∪ (B(n) ∩ F )

= B(n)

⊆ relT (n)

Finally, observe that relT ′(s) = relT (s) = F . Hence the width of T ′ is indeed
no larger than the width of T , as desired.

B.3 Proof of Theorem 4

Theorem 4 Let ϕ be a CNF formula. Let F ⊆ Vars(ϕ), and let w be a positive
integer. If there is an F -free project-join tree for ϕ of width w, then there is a
project-join tree for ϕ ∪ {virtual(F )} of width w.

Proof. Let T be an F -free project-join tree for ϕ of width at most w. Produce
T ′ by attaching to the root of T a new leaf node corresponding to CF . Then T ′
is a project-join tree for ϕ ∪ {CF }, and its width is identical to T .

B.4 Proof of Theorem 5

Theorem 5 Let ϕ be a CNF formula. Let {X,Y } be a partition of Vars(ϕ), and
let w be a positive integer. Assume each call to BuildComponent(α, F ) returns
an F -free project-join tree for α of width at most w. Then Algorithm 2 returns
an (X,Y )-graded project-join tree for ϕ of width at most w.

Proof. Let T be the project-join tree produced on line 6, and let T ′ = (T, r, γ, π)
be the project-join tree returned by Algorithm 2. By Definition 9, every y ∈ Y
is a variable of exactly one Ny ∈ GroupBy(ϕ, Y ). It follows that every y ∈ Y is
projected out at exactly one node of T ′, namely the node at which y is projected
out in TNy . Similarly, after the loop on line 2 completes, no variable from X is
projected out across all of {TN : N ∈ GroupBy(ϕ, Y )}, since all X projections
are removed on line 4. Thus every x ∈ X is also projected out at exactly one
node of T ′, namely the node at which x is projected out in T . Thus T ′ satisfies
the first property of Definition 4.

We prove the second property of Definition 4 by contrapositive. That is,
assume that there is some n ∈ V(T ) \ L(T ), variable z ∈ π(n), and c ∈ ϕ s.t.
z ∈ Vars(c) but γ−1(c) is not a descendant of n in T ′. Let N be the block of
GroupBy(ϕ, Y ) that contains c. We split into two cases:
– Case: z ∈ Y . Let n′ be the node in TN that corresponds to n, where z is

projected. Then γ−1(c) is not a descendant of n′ in TN . It follows that TN
is not a project-join tree.

– Case: z ∈ X. Let n′ be the node in T that corresponds to n, where z is
projected. Since γ−1(c) is not a descendant of n in T , the leaf corresponding



26 J. M. Dudek et al.

to CN is not a descendant of n′ in T . But z ∈ Vars(N)∩X, so z ∈ Vars(CN ).
It follows that T is not a project-join tree.

We conclude that T ′ satisfies the second property of Definition 4 provided that
BuildComponent always returns project-join trees.

Finally, we prove that the width of T ′ is at most w. To see this, we observe
that the set of variables at each node of T ′ is exactly the set of variables appear-
ing at the node of the corresponding component project-join tree. The width
of T ′ is thus the maximum size that appears across all component project-join
trees returned by BuildComponent.

B.5 Proof of Theorem 6

Theorem 6 Let ϕ be a CNF formula, and let {X,Y } be a partition of Vars(ϕ).
Let w be a positive integer, and let ψ = ϕ∪{virtual(Vars(N) ∩X) : N ∈ GroupBy(ϕ, Y )}.
If there is a project-join tree T ′ for ψ of width w, then there is an (X,Y )-graded
project-join tree for ϕ of width at most w.

Proof. We first show that, for each call to BuildComponent(α, F ) in Algorithm
2, there is an F -free project-join tree for α of width at most w. There are two
cases to consider: the calls on line 3 and the call on line 6.
– Case: line 3. Consider some N ∈ GroupBy(ϕ, Y ). Our goal is to find a

(Vars(N) ∩ X)-free project-join tree for N . Observe that N ∪ {CN} is a
subset of ψ. Thus let SN be the smallest subtree of T ′ containing all leaves
labeled by some element of N ∪{CN}. SN is a project-join tree for N ∪{CN}
whose width is no more than w. By Theorem 3, there is a (Vars(N)∩X)-free
project-join tree for N of width no more than w.

– Case: line 6. Similarly, let N ′ = {CN : N ∈ GroupBy(ϕ, Y )} and observe that
N ′ is a subset of ψ. Let S be the smallest subtree of T ′ containing all leaves
labeled by some element of N ′. Then S is a project-join tree for N ′ whose
width is no more than w.
It then follows from Theorem 5 that there is an (X,Y )-graded project-join

tree for ϕ of width at most w.

B.6 Proof of Theorem 7

Theorem 7 Let ϕ be a CNF formula, and let {X,Y } be a partition of Vars(ϕ).
Let w be a positive integer, and let ψ = ϕ∪{virtual(Vars(N) ∩X) : N ∈ GroupBy(ϕ, Y )}.
If there is an (X,Y )-graded project-join tree for ϕ of width w, then there is a
project-join tree for ψ of width w.

Proof. Let T be an (X,Y )-graded project-join tree for ϕ of width w, and let
IX , IY be the grades of T . We first aim to show that, for everyN ∈ GroupBy(ϕ, Y ),
there is some node nN of T with N ∩X ⊆ Vars(nN ).

Consider an arbitrary N ∈ GroupBy(ϕ, Y ). If |N | = 1, define nN to be the
node of T corresponding to the only element of N ; thus Vars(nN ) = Vars(N),
so indeed N ∩ X ⊆ Vars(nN ). Otherwise, define nN ∈ V(T ) to be the lowest
common ancestor of N in T . Then there exist distinct clauses A,B ∈ N s.t. nN
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is also the lowest common ancestor of the two leaves labeled by A and B. By
Definition 9, since A,B ∈ N , there must be a sequence C1, C2, · · · , Ck ∈ N s.t.
C1 = A, Ck = B, and for each 1 ≤ i ≤ k, we have Vars(Ci)∩Vars(Ci+1)∩Y 6= ∅.
Since nN is the lowest common ancestor of A and B, and because T is a tree,
there must be some 1 ≤ i ≤ k s.t. nN is also the lowest common ancestor
of Ci and Ci+1. Thus Vars(Ci) ∩ Vars(Ci+1) ⊆ Vars(nN ). Since Vars(Ci) ∩
Vars(Ci+1) ∩ Y 6= ∅, it follows that Y ∩ Vars(nN ) 6= ∅ as well. Thus nN ∈ IY .
By Definition 6, this means that for all descendants o of nN , π(o) ∩ X = ∅.
It follows that Vars(nN ) must still contain all variables in N from X; that is,
Vars(N) ∩X ⊆ Vars(nN ).

Construct T ′ from T by, for each N ∈ GroupBy(ϕ, Y ), attaching a new leaf
labeled by virtual(Vars(N)∩X) as a child of nN . Since N ∩X ⊆ Vars(nN ) in
the initial tree, the width of T ′ is equal to the width of T . Moreover, T ′ is now
a project-join tree for ψ.
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